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ABSTRACT

Recently, efficiencies in the 29–34% range have been
demonstrated for triple-junction GaInP/GaAs/Ge (“3J”)
cells under various spectral and concentration conditions.
There is still room for improvement in these cell
efficiencies, especially in the front-grid metallization, the
optimization of which is especially important for high-
concentration operation. Here, we make an estimate of
the maximum efficiency that is realistically achievable
for the 3J cell under concentration, assuming that all
parts of the device, including the front grids, are to be
optimized as well as is practically possible. We make
this estimate semi-empirically, by starting from the
performance that has been demonstrated for the best 3J
cells under one-sun conditions. We then extrapolate to
concentrator operation assuming optimized front grids. A
standard operating temperature of 300 K is used
throughout.

1. Approach
We consider a selection of 3J cells made recently by

Spectrolab and tested at NREL as good representatives
of the state of the art. For both their recently
demonstrated 31%-efficient cell at one-sun AM1.5G [1]
and their 29%-efficient AM0 cell [2], the short-circuit
current was 90% of ideal when extrapolated to zero grid
coverage. We take this 90% figure as representative of
the best current collection that can be expected for these
devices. One-sun open-circuit voltages (VOC) for these
devices fall in the range of 2.55V to 2.65V. We make the
slightly conservative assumption that 2.55V is
representative of the best achievable VOC; of this, 1.40V
is attributed to the GaInP junction, 1.05V to the GaAs
junction, and 0.15V to the Ge junction. Current-voltage
(IV) curves for these high-quality junctions are all
represented very well by the ideal-diode relation with

ideality factor n≈1. With VOC, short-circuit current
density JSC, and n(=1) for each junction as empirically
determined inputs to the ideal-diode relation, we can
calculate the corresponding IV curves for each junction,
and then combine them to get the full three-junction IV
curve V(I)=∑Vn(I). From this full IV curve, the
efficiency can be computed at one sun and as a function
of concentration for whichever spectrum is of interest.
This semi-empirical approach is described in detail
elsewhere [3]. We consider three different spectra: (1)
the AM1.5 Direct spectrum, which has historically been
used as the concentrator standard spectrum; (2) a newly
introduced spectrum with a low aerosol optical depth
(AOD), which is now considered a more realistic
representation of typical spectral conditions for
concentrator operation [4]; and (3) the AM1.5 Global
spectrum, which is a fairly good approximation to the
new low-AOD spectrum.

2. Results
The resulting efficiencies are shown as the thin

dashed lines in Fig. 1. Because these curves do not
account for the series and shadowing losses, they
overestimate real-world efficiencies, especially at the
high concentrations at which these losses become
important. To account for these losses, we calculate the
resistive losses as a function of the front-grid
parameters, using a simple but reliable lumped-
resistance model described by Gessert and Coutts [5].
At high concentrations, where series-resistance losses
are significant, it is important to optimize the grid
design by balancing the decrease in series-resistance
loss obtained by increasing the number of grid fingers
against the concomitant increase in grid-shadowing
loss. This tradeoff is illustrated in Fig. 2, which shows
contours of fractional combined resistive+shadowing
power loss as a function of grid-finger width and
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Figure 1. Projected 3J cell efficiencies as a function of
concentration, before resistive+shadowing losses are
accounted for (dashed lines) and with those losses
accounted for with optimized grids (solid lines).
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Figure 2. Resistive+shadowing loss in % for 3J cell at
500 suns concentration, as a function of grid-finger
width and spacing. The cell and grid parameters
assumed are shown in Table I.
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spacing, for a 3J cell at 500 suns. The cell and grid
parameters assumed are shown in Table I; the grid
parameters are illustrated schematically in Fig. 3. Figure
2 shows that the power loss depends sensitively on both
the finger width and spacing. For a given finger width,
there is a finger spacing that optimally trades off grid-
shadowing losses, which are smallest for large spacings,
with series-resistance losses, which are smallest at small
finger spacings. However, if we now allow the finger
width to vary, we see that smaller widths make possible
lower power loss. This is the case because small finger
widths reduce the shadowing losses, which would
otherwise become prohibitive when the fingers are
brought close together; closely spaced fingers reduce

series-resistance losses due to lateral conduction
through the cell emitter to the nearest grid finger. By
convention, bus bars are not considered part of the cell
area and so are not considered to be shadowing losses.
Figure 2 shows that resistive+shadowing losses could,
in principle, be made very small if the finger width
could be made narrow enough.

In practice, however, there is a limit on how narrow
the grid fingers can be made, especially because
maintaining the conductivity of a grid finger while
reducing its width necessitates increasing its height, and
hence its aspect ratio. It should be possible with
evaporation/liftoff metallization to fabricate silver grid
fingers as narrow as 3 µm with a height/width aspect
ratio of 2. This is a major improvement over the
electroplated grids with their ~12µm finger widths
which we have used in the past, e.g. for the 32.3%-
efficient 3J cell [1]. Due to difficulties in selectively
etching the cell’s GaAs contact layer without etching
the silver metallization, it is prudent to make the
conservative assumption that the effective shadowing
width of each finger is 2 µm greater than its actual
width; e.g., a finger that for the purposes of electrical
conduction is 3 µm wide has a 5-µm-wide shadow.
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Figure 4. Optimized grid-finger spacing, and
corresponding resistive+shadow power loss, for the 3J
cell under concentration.

The results of optimizing the 3J concentrator cell grid
design as a function of concentration are shown in Fig.
4; the cell and grid parameters assumed are shown in
Table I. The optimum grid-finger spacing decreases
with concentration, and the corresponding
resistive+shadowing power loss increases. By
combining the loss-vs.-concentration curve with the no-
grid-loss efficiencies shown as the dashed lines in Fig.
1, we obtain the efficiency vs. concentration with
resistive+shadow losses included. The results are shown
in Fig. 1 as the thick solid lines, which represent our
projection of the best actual efficiencies that are likely
to be obtainable from the 3J cell. The peak efficiencies
occur at about 500 suns. It should be emphasized that
the efficiency peak is very broad, so that the
efficiencies at 1000 suns are within 0.1% of the 500-sun
peak efficiencies. Table II summarizes the peak
efficiencies for each spectrum, showing projected

Table I. Cell and grid parameters used for the power-
loss calculations, except where otherwise specified.

Parameter Value
VOC 2.55 V
JSC @ 1sun 16 mA/cm2

Front-contact resistance 0.05 mΩcm2

emitter sheet resistance 250 Ω/sq
cell dimensions 3mm × 3mm
grid conductivity (Ag) 1.8 µΩ cm
grid-finger height 6 µm
grid-finger width 3 µm
grid-finger additional
shadowing width
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Figure 3. (a) Schematic grid-finger cross section (not
to scale), illustrating the dimensions referred to in the
text and in Table I. (b) Plan  view of grids.
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efficiencies in the 37% range for the AM1.5G and low-
AOD spectra, and in the 35% range for the AM1.5D
spectrum.

Because series resistance in grid fingers is significant
at high concentration, concentrator efficiencies depend
on the cell dimensions; large cells with long grid fingers
have higher series resistance than smaller cells. It is of
interest to ask what the decrement in efficiency would be
for a cell larger than 0.1 cm2 cell area specified in Table
1. For a 1 cm2 cell, the peak efficiencies drop by 1.3%,
to 36.4% for the AM1.5 Global spectrum and
correspondingly lower for the other spectra. The
corresponding peak-efficiency concentration drops to
200 suns, and the efficiencies fall off faster away from
the peak than for the smaller cell — for the larger cell,
the efficiencies fall off an additional 0.3% as the
concentration is increased from 200 to 500 suns.

3. Discussion
Returning to the 0.1 cm2 cell, one might ask what

further efficiency gains would be possible if we could
improve certain aspects of the cell and grids even
further. If we suppose that (1) the cell emitter sheet
resistance could be reduced to 100 Ω/sq without any
adverse consequences, and (2) the 2 µm grid-finger
additional shadowing width could be eliminated, then the
projected peak efficiencies increase by ~1% absolute, to
38.8% for the AM1.5G spectrum, and the corresponding

concentration at which this peak occurs increases to
~1000 suns. However, these suppositions do not seem
warranted at present.

4. Summary
In summary, for a research-sized 0.1 cm2 cell, we

project realistically achievable 3J cell concentrator
efficiencies in the 37% range for the AM1.5G and low-
AOD spectra, and in the 35% range for the AM1.5D
spectrum. Increasing the cell area to 1 cm2 lowers
projected efficiencies by ~1%.
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Table II. Summary of projected peak 3J 0.1 cm2 cell
efficiencies for various spectra, from Fig. 1.

Spectrum Efficiency (%)
AM1.5 Global 37.7
low AOD 37.4
AM1.5 Direct 35.9
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